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Abstract 

Generating set search (GSS) is a family of direct search methods that en- 
compasses generalized pattern search and related methods. We describe an 
algorithm for asynchronous linearly-constrained GSS, which has some complex- 
ities that make it different from both the asynchronous bound-constrained case 
as well as the synchronous linearly-constrained case. The algorithm has been 
implemented in the APPSPACK software framework and we present results 
from an extensive numerical study using CUTEr test problems. We discuss the 
results, both positive and negative, and conclude that GSS is a reliable method 
for solving small-to-medium sized linearly-constrained optimization problems 
without derivatives. 
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1 Introduction 

Generating set search (GSS), introduced in [19], is a family of methods for derivative- 
free optimization that encompasses generalized pattern search [29, 21 and related 
methods. Two key features of GSS methods is that they can handle linear constraints 
and that they are easily parallelizable. 

The problem of linear constraints for GSS has been studied by Kolda, Lewis, and 
Torczon [ 181, who present a GSS method for linearly-constrained optimization, and 
Lewis, Shepherd, and Torczon [22], who discuss the specifics of implementing GSS 
methods for linearly constrained optimization as well as numerical results for five test 
problems. Both these papers build upon previous work by Lewis and Torczon [23], 
which showed that the search directions must conform to the nearby boundary. 

GSS methods have been parallelized in the software package APPSPACK [ll, 15, 
171, which is an asynchronous implementation of GSS for unconstrained and bound 
constrained problems and has proved to be useful in a variety of applications [3, 4, 
7, 12, 13, 21, 24, 25, 26, 281. The asynchronous implementation has the advantage 
of more efficiently using distributed resources by minimizing processor idle time. In 
numerical experiments, the asynchronous method has been as fast or faster than the 
synchronous method; for example, in recent work, the asynchronous method was 8- 
30% faster on a collection of benchmark test problems problems in well-field design 
1171. 

In this paper, our contribution is to show how to handle linear constraints in an 
asynchronous GSS method. For GSS methods, the search directions must conform 
to the nearby boundary and the definition of “nearby” depends on the current step 
length control parameter. In the asynchronous implementation, different directions 
may have different step lengths, so we must handle that situation carefully. 

The linearly-constrained optimization problem we consider is 

minimize f (XI 
subject to cL 5 AIz 5 cu 

AEx = b. 

Here f : R” t R is the objective function. The matrix AI represents the linear 
inequality constraints, including any bound constraints. Inequality constraints need 
not be bounded on both sides; that is, we allow for entries of CL to be -00, and entries 
of cu to be f00. The matrix AE represents the equality constraints. 

The paper is organized as follows. We describe an asynchronous GSS algorithm 
for linearly-constrained optimization problems in 52, along with a detailed discussion. 
In 53, we show that this algorithm is guaranteed to converge to a KKT point under 
mild conditions. Moreover, the asynchronous algorithm has the same theoretical 
convergence properties as its synchronous counterpart in [18, 221. Details that help 
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to make the implementation efficient are presented in 54, and we include extensive 
numerical results on problems from the CUTEr [lo] test set in 55. We are able 
to solve problems with up to 505 variables and up to 2000 constraints. In fact, 
linear constraints often reduce the number of search directions at each iteration, 
thereby enabling us to solve larger problems than in the unconstrained case. We also 
compare synchronous and asynchronous versions of the code on several test problems, 
demonstrating that an asynchronous implement at ion can greatly reduce execution 
time. We draw conclusions and discuss future work in 56. 



2 Asynchronous GSS for problems with linear 
constraints 

Here we describe the algorithm for parallel, asynchronous GSS for linearly-constrained 
optimization. Kolda, Lewis, and Torczon [18] outline a GSS algorithm for problems 
with linear inequality constraints and consider both the simple and sufficient decrease 
cases. Lewis, Shepherd, and Torczon [22] extend this method to include linear equality 
constraints as well. Kolda [17] describes a parallel asynchronous GSS method for 
problems that are either unconstrained or bound constrained, considering both the 
simple and sufficient decrease cases. Here, we revisit the asynchronous algorithm and 
extend it to handle problems with linear constraints. As much as possible, we have 
adhered to the notation in [17]. 

The algorithm is presented in Algorithm 1, along with two subparts in Algo- 
rithms 2 and 3. In addition to the parameters for the algorithm (discussed in §2.1), 
we assume that the user provides the linear constraints that define the feasible region, 
denoted by R, and a means for evaluating f ( x ) .  The notation used is as follows. Sub- 
scripts denote the iteration index. The vector x k  E R" denotes the best point, Le., the 
point with the lowest function value at the beginning of iteration k .  The set of search 
directions for iteration k is denoted by ?&. Superscripts denote the direction index, 
which ranges between 1 and IDkl at iteration k .  For simplicity in our discussions and 
because it is often practical, we assume 

Because the method is asynchronous, each direction has its own step length, denoted 
by 

A, (4 for i = 1,. . . , IDkI. 

The set (1,. . . , IDkI} is the set of active indices, that is, the indices of those 
directions that have an active trial point in the evaluation queue or that are converged 
(Le., A t )  < &I).  At iteration k ,  trial points are generated for each i $$ &. The 
trial point corresponding to direction i at iteration k is given by y = x k  + A ,  d, (see 
Algorithm 2); we say that the point x k  is the parent of y. 

- (4 (9 

In this paper, we focus solely on the sufficient decrease case because it is the most 
practical. We present Algorithm 3 in terms of the forcing function 

p ( A )  = aA2, 

where A is the step length that was used to produce the trial point, and the multi- 
plicand Q is a user-supplied parameter of the algorithm. Other choices for p(A) are 
discussed in 53.2.2. 
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Algorithm 1 Asynchronous GSS for linearly-constrained optimization 
Require: xo E R 
Require: Atol > 0 
Require: .Amin > Atol 
Require: 60 > Atol 
Require: Emax > Atol 

Require: Qmax 2 0 
Require: a > 0 

D initial starting point 
D step length convergence tolerance 

D minimum first step length for a new best point 
D initial step length 

D maximum distance for considering constraints nearby 
D max queue size after pruning 

D sufficient decrease parameter, used in Alg. 3 

1: GO + generators for T(xo ,  EO) where EO = rnin{SO, Emax} 

2: Do t a set containing GO 
3: A!’ + 60 for i = I , .  . . , \DO\ 
4: A o t 0  
5: for k = 0,1,. . . do 
6: 
7: 
8: 
9: 

10: 
11: xk+l y k  

12: 6 k + l  t ~ ~ ~ { S T E P ( Y ~ ) ,  Amin> 

Xk t { xk + At’dt’ I 1 5 i 5 IDkI, i # Ak } (see Alg. 2) 
send trial points Xk (if any) to the evaluation queue 
collect a (non-empty) set J& of evaluated trial points 
& t subset of & that has sufficient decrease (see Alg. 3) 
if there exists a trial point yk E & such that f(yk) < f ( x k )  then 

D generate trial points 

D successful 

13: 
14: 

G k + l  t generators for T(xk+l, E ~ + I )  where E ~ + I  = min{Sk+l, Emax} 

Dk+1 t a set containing G k + l  

15: ~ ( 2 ’  k + l  t 6k+l for i = 1,. . . , p k + l l  

16: Ak+l 0 
17: 
18: else 

20: 

21: 

prune the evaluation queue to Qmm or fewer entries 

19: xk+l xk 
Z k  t {DIRECTION(Y) : y E & and  PARENT(^) = xk} 

6k+l t min { i ~ t )  I i E Zk } u { ~ t )  I i Zk } 
&+I t generators for T(xk+l, E ~ + I )  where E ~ + I  = min(&+l, Emax} 

~ k + 1  t a set containing Dk u (Grc+l \ Do,) 
for 1 I i 5 IDkl and i E Z k  

A‘i’ k+l-(’ A t )  for 15 i 5 1Dkl and i $iZk 

22: 
23: 

A‘i’ 

24: 

6 k + l  for 1Dkl < i I IDk+ll 
25: 
26: end if 
27: if Aci’ < Atol for i = 1,. . . , IDk+lI then terminate. 
28: end for 

Ak+l+- { i I 1 I i I ( D k ( , i  #Zk } u {  i 1 1 I i I lDk+ll,Ap < At01 } 

k+l 

D unsuccessful 
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Algorithm 2 Generating trial points 
1: for all 2 E (1,. . . , I D k I }  \ & do 
2: 

3: A = rnin{AE), A) 
4: if d>O then 

A = max{ A > o I x k  + E R } D max feasible step 

5: y X k  $- Ad:) 
6:  STEP(^) + A:) 
7: PARENT(9) t x k  

8: PARENTFX(Y) f ( x k )  

9: DIRECTION(~J) t i 
10: 
11: else 
12: A t )  t 0 
13: end if 
14: end for 

add y to collection of trial points 

Algorithm 3 Sufficient decrease check 
1: y K t 0  
2: for all y E & do 
3: f t PARENTFX(Y) 
4: A t STEP(Y) 
5: 

7: end if 
8: end for 

if f ( y )  < f - aA2 then 
6:  y k  Y K  u {Y} 

13 



2.1 Initializing the algorithm 

A few comments regarding the initialization of the algorithm are in order. Because 
GSS is a feasible point method, the initial point zo must be feasible. If the given 
point is not feasible, we first solve a different optimization problem to find a feasible 
point; see 55.2. 

The parameter Atol is problem-dependent and plays a major role in determining 
both the accuracy of the final solution and the number of iterations. Smaller choices 
of Atol yield higher accuracy but the price is a (possibly significant) increase in the 
number of iterations. If all the variables are scaled to have a range of 1 (see §4.1), 
choosing Atol = 0.01 means that the algorithm terminates when the change in each 
parameter is less than 1%. 

The minimum step size following a successful iteration must be set to some value 
greater than Atol and defaults to Amin = 2Atol. A typical choice for the initial step 
length is So = 1; relatively speaking, bigger initial step lengths are better than smaller 
ones. The parameter E,, forms an upper bound on the maximum distance used to 
determine whether a constraint is nearby and must also be greater than Atol. A 
typical choice is emax = 2Atol. The pruning parameter q,, is usually set equal to the 
number of worker processors, implying that the evaluation queue is always emptied 
save for points currently being evaluated. The sufficient decrease parameter a is 
typically chosen to be some small constant such as a = 0.01. 

2.2 Updating the search direct ions 

In Steps 1, 13, and 22, a set of conforming search directions, with respect to z and E ,  

is generated. In the synchronous algorithm, specifically, those are the directions that 
generate T(z,,E,), the €-tangent cone about x k  (see 53.1.1). The details of finding 
the generators are described in 54.4. Several examples of generating sets are shown 
in Figure 1. The choice of E ,  depends on A,; specifically, we set ~k = min{Ak, emax}. 
The constant E,, provides a maximum distance for considering constraints because 
it generally does not make sense to consider constraints that are far away and can 
even confuse the method as seen in Figure l(d). Asymptotically, however, E ,  = A,. 

In the asynchronous case, meanwhile, every search direction has its own step 
Consequently, D,, the set of search directions at iteration k ,  must length, A!). 

contain generators for each of the following cones: 

(3) T(zk,  E )  for all E = min{ A, (4 , Emax} for i = 1, . . . , ID, 1 .  

This requirement is not as onerous as it may at first seem. After successful iterations, 
the step sizes are all equal, so only one tangent cone is relevant (Step 13). It is 
only after an unsuccessful iteration that generators for multiple tangent cones may 
be needed simultaneously. As the individual step sizes A!) are reduced, which they 
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(a) The €-ball does not intersect any 
constraints; any positive spanning set 
can be used. 

(c) The current iterate is not on the 
boundary hut its 6-ball intersects with 
two constraints. 

(b) The current iterate is on the 
boundary and its €-ball intersects with 
two constraints. 

(d) The value of E is so large that the 
corresponding e-tangent cone is empty. 

Figure 1. Different set of conforming directions as z h  and 
€k Vary. 

will be by Theorem 3.12, generators for multiple values of E may need to be included. 
Because E k + l  E { Q ,  i ~ k }  in Step 21, we need add at most one set of search directions 
per iteration in order to satisfy (3). If &+I = & or b k + l  2 E,,, then E k + l  = Ek,  
so there will be no difference between T(zh+l, ~ + l )  and T(zk, e k ) .  Consequently, we 
can skip the calculation of extra directions in Step 13 and Step 22. When the E- 

active constraints do differ and different e-tangent cones are produced, we generate 
the conforming directions for the new smaller value of Ek in Step 22 and then merge 
them with the full direction set in Step 23. Even then, it is often the case that 
different values of f k  (i) yield identical sets of active constraints, so 2 ) k + l  = 2 ) k .  

15 



2.3 Trial Points 

In Step 6, trial points are generated for each direction that does not already have 
an associated trial point and is not converged. Algorithm 2 provides the details of 
generating trial points. If a full step is not possible, then the method takes the longest 
possible feasible step. However, if no feasible step may be taken in direction d t ) ,  the 
step length A;) is set to zero. Note that STEP(Y) stores A t )  as opposed to the 
truncated step size A; this prevents the step size from becoming prematurely small 
due to a point being near the boundary. 

The set of trial points collected in Step 8 may not include all the points in Xk and 
may include points from previous iterations. 

2.4 Successful Iterations 

The candidates for the new best point are first restricted (in Step 9) to those points 
that satisfy the sufficient decrease condition. The sufficient decrease condition is with 
respect to the point’s parent, which is not necessarily zk. The details for verifying 
this condition are in Algorithm 3. Next, in Step 10, we check whether or not any 
point strictly improves the current best function value. If so, the iteration is called 
successful. 

In this case, we update the best point, reset the search directions and correspond- 
ing step lengths, prune the evaluation queue, and reset the set of active directions 
&+I to the empty set. Note that we reset the step length to &+1 in Step 15 and that 
this value is the maximum of the step that produced the new best point and Amin 
(see Step 12). The constant Amin is used to reset the step length for each new best 
point and is needed for the theory that follows; see Proposition 3.8. In a sense, Amin 

can be thought of as a mechanism for increasing the step size, effectively expanding 
the search radius after successful iterations. 

The pruning in Step 17 ensures that the number of items in the evaluation queue 
is always finitely bounded. In theory, the number of items in the queue may grow 
without bound [17]. 

2.5 Unsuccessful Iterations 

If the condition in Step 10 is not satisfied, then we call the iteration unsuccessful. 
In this case, the best point is unchanged (zk+l = zk). The set 2, in Step 20 is the 
set of direction indices for those evaluated trial points that have xk as their parent. 
If 1, = 0 (in the case that no evaluated point has xk as its parent), then nothing 
changes; that is, Dk+l t Dk, AtLl t A t )  for i +-- 1,. . . ,IDk+ll, and &+I t Ak. If 

16 



1, # 8, we reduce step sizes corresponding to indices in 1, and add new directions to 
Dk+l as described in $2.2. 

It is important that points never be pruned during unsuccessful iterations. Prun- 
ing on successful iterations offers the benefit of freeing up the evaluation queue so that 
points nearest the new best point may be evaluated first. In contrast, at unsuccessful 
iterations, until a point has been evaluated, no information exists to suggests that 
reducing the step size and resubmitting will be beneficial. Theoretically, the basis for 
Proposition 3.8 hinges upon the property that points are never pruned until a new 
best point is found. 

2.6 An illustrated example 

In Figure 2, we illustrate six iterations of Algorithm 1, applied to the test problem 

) (4) minimize f (x)  = J9.f + (3x2 - 5)2 - 5exp ( (3z1+2)2+(322-1)2+1 
-1 

3x1 1 4  
-2 < - 322 5 5  

-321 -3x2 5 2 subject to 

We initialize Algorithm 1 with 20 = a, Atol = 0.01 (though it’s not relevant in 
the iterations we show here), Amin = 0.02 (likewise), A0 = 1, Em, = 1, Qmax = 2, and 
a = 0.01. 

The initial iteration is shown in Figure 2a. Shaded level curves illustrate the value 
of the objective function, with darker shades representing lower values. The feasible 
region is shown by the pentagon. The current best point, xo = a, is denoted by a star. 
We calculate the search directions (shown as lines emanating from the current best 
point to corresponding trial points) that conform to the constraints captured in the 
€0-ball. We also initialize the step lengths, generating the trial points b and c ,  both 
of which are submitted to the evaluation queue. We assume that only a single point, 
c ,  is returned by the evaluator. In this case, the point satisfies sufficient decrease with 
respect to its parent, a, and necessarily also satisfies simple decrease with respect to 
the current best point, a. 

Figure 2b shows the next iteration. The best point is updated to x1 = c.  The set 
of nearby constraints changes, so the search directions also change, as shown. The 
step lengths are all set to S1 = 1, generating the new trial points d and e,  which are 
submitted to the evaluation queue. Once again, the evaluator returns a single point, 
d. In this case, d does not satisfy the sufficient decrease condition, so the iteration 
is unsuccessful. 

In Figure 2c, the best point is unchanged, i.e., x2 = x1 = c.  The value of S2 and 
hence €2 are reduced to i. In this case, however, the set of €-active constraints is 
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Watt for evaluator to return.. 

YO = {c } ,  Queue = {b} 
f (c )  < f (4 - P(@’) * Successful 

Figure 2a. Iteration k = 0 for example problem 

Wait for evaluator to return. . . 
Yi = {d}, Queue = {b, e} 

+ Unsuccessful 
f (4 2 f (c )  

Figure 2b. Iteration k = 1 for example problem 

Wait for evaluator to return.. 

Figure 2c. Iteration k = 2 for example problem 
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Figure 2d. Iteration k = 3 for example problem 

X, = {f, j, k}, Queue = {h, i, j ,  k) 

Watt for evaluator to return.. . 
y, = {h}, Queue = {i, j ,  k} 
m 2  f(b) 
+ Unsuccessful 

Figure 2e. Iteration k = 4 for example problem 

1 XS = b, 65 = i, €5 = 5 
v5 = v4 
A!) = + for i = 1,2 ,3 ,4  

And the process continues. . 

Figure 2f. Iteration IC = 5 for example problem 
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unchanged, so 272 = 271. The step length corresponding to the first direction, A t ) ,  
is reduced and a new trial point, f ,  is submitted to the queue. This time, two points 
return as evaluated, f and b, the latter of which has the lower function value. In this 
case, we check that b satisfies sufficient decrease with respect to its parent, a, and 
that it also satisfies simple decrease with respect to the current best point, c.  Both 
checks are satisfied, so the iteration is successful. 

In Figure 2d, we have a new best point, 23 = b. The value of 6 3  is set to 1.0, the 
step length that was used to generate the point b. Conforming search directions are 
generated for the new €-active constraints. The trial points { g ,  h} are submitted to 
the evaluation queue. In this case, the points e and g are returned, but neither satisfies 
sufficient decrease with respect to its parent. Thus, the iteration is unsuccessful. 

In Figure 2e, the best point is unchanged, so x4 = x3 = b. However, though 
our current point did not change, because 6, = + is reduced, €4 = + is also reduced. 

I 1 

In contrast to iteration 2, the €-active constraints have changed. The generators for 
T(xq,!j) are 

The first direction is already in 273; thus, we need only add the last two directions to 
form D4. In this iteration, only the point h is returned, but it does not improve the 
function value, so the iteration is unsuccessful. 

For Figure 2f, we have 65 = 64,  so there is no change in the search directions. 
The only change is that the step corresponding to direction 2 is reduced. And the 
iterations continue. 
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3 Theoretical properties 

In this section we prove global convergence for the asynchronous GSS algorithm de- 
scribed in Algorithm l. A key theoretical difference between GSS and asynchronous 
GSS is that all the points at iteration k may not be evaluated by iteration k + 1. 
This necessitates having multiple sets of directions in Dk corresponding to different 
etangent cones. 

3.1 Definitions and terminology 

3.1.1 €-normal and E- tangent cones 

Integral to GSS convergence theory in [l8] are the concepts of tangent and normal 
cones. A cone K is a set in R" that is closed under nonnegative scalar multiplication; 
that is, a x  E K if Q 2 0 and x E K .  The polar of a cone K ,  denoted by KO, is 
defined by 

K 0 = { w  I W ~ U < O V V E K }  

and is itself a cone. Given a convex cone K and any vector o, there is a unique 
closest point of K to o called the projection of 'u onto K and denoted v K .  Given a 
vector o and a convex cone K ,  there exists an orthogonal decomposition such that 
v = V K  + o ~ v ~ o  = 0, with V K  E K and uKO E KO. A set G is said to generate a 
cone K if K is the set of all nonnegative combinations of vectors in G. 

For a given x ,  we are interested in the etangent cone, which is the tangent cone 
of the nearby constraints. Following [18], we define the €-normal cone N ( x , E )  to be 
the cone generated by the outward pointing normals of constraints within distance E 

of x .  The etangent cone is its polar, i.e., T ( x ,  E )  N ( x ,  E ) " .  

We can form the generators for N ( x ,  E )  explicitly from the rows of AI and A E  as 
follows. Let (AI)i denote the i th row of AI and let (AI)s denote the submatrix of AI 

with rows specified by S .  For a given x and E we can then define the index sets of 
€-active constraints for AI as 

and matrices Vp and V L  as 
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Then the set 
V(Z, E) = { 'u I 'u is a column of [Vp, VL, -VL] } 

generates the cone N(z,E). We delay the description of how to form generators for 
the polar T ( x ,  E )  until 54.4 because the details of its construction is not necessary for 
the theory. 

The following measure of the quality of a given set of generators G will be needed 
in the analysis that follows and comes from [18, 22, 191. For any finite set of vectors 
G, we define 

(6) , where E( is the cone generated by G. uT d 
inf max .(') E ~ E R ~  ~ E B  1 )  vK ) ) ) )  d 1 )  
V K  #o 

It can be shown that K(G)  > 0 if G # {0} [18, 231. As in [18] we make use of the 
following definition: 

vmin = min{K(V) : It = V ( Z ,  E ) ,  z E R, E 2 0, V(Z, E )  # 0}, (7) 
which provides a measure of the quality of the constraint normals serving as generators 
for their respective E-normal cones. Because only a finite number of constraints exists, 
there are a finite number of possible normal cones. Since .(It) > 0 for each normal 
cone, we must have that v,i, > 0. We will need the following proposition in the 
analysis that follows: 

Proposition 3.1 ([18]) If z E R, then for all E 2 0, 

where vmin is defined in (7). 

3.1.2 A measure of stationarity 

In our analysis, we use the first-order optimality measure 

that has been used in previous analyses of GSS methods in the context of general 
linear constraints [19, 17, 18, 221. This measure was introduced in [6, 51 and has the 
following three properties: 

1. x ( x )  L 0, 

2. X(Z) is continuous (if of(.) is continuous), and 

3 .  x ( x )  = 0 for x E R if and only if x is a KKT point. 

Thus any sequence {xk} satisfying limk+m x ( x k )  = 0 necessarily converges to a first- 
order st at ionary point. 
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3.2 Assumptions and conditions 

3.2.1 Conditions on the generating set 

As in [18, 221, we require that K ( G ~ ) ,  where G k  denotes the conforming directions 
generated in Steps 1, 13, and 22 of Algorithm 1,  be uniformly bounded below. 

Condition 3.2 There exists a contact 6,in, independent of k ,  such that for 
every k for which T(zk,  ~ k )  # {0}, the set' G k  generates T(zk ,  ~ k )  and satisfies 
K ( G ~ )  2 &,in, where K ( . )  is defined in (6). 

3.2.2 Conditions on the forcing function 

Convergence theory for GSS methods typically requires either that all search di- 
rections lie on rational lattice or that a sufficient decrease condition be imposed 
[19, 181. This latter condition ensures that f(z) is sufficiently reduced at each suc- 
cessful iteration. Both rational lattice and sufficient decrease conditions are mecha- 
nisms for globalization, i.e., ensuring that the step size ultimately becomes arbitrarily 
small [19, 18, 171. Because it is both theoretically and computationally simpler than 
the alternative, we only consider the sufficient decrease case. Specifically, we use the 
forcing function 

where Q > 0 is specified by the user in Algorithm 3. In general, the forcing function 
p(.)  must satisfy Condition 3.3. 

p ( A )  = CIA2, 

Condition 3.3 Requirements on the forcing function p(.):  
1. p(.) is a nonnegative continuous function on [0, +GO). 

2. p( - )  is o(t)  as t J, 0; i.e., limp(t) / t  = 0. 

3. p(.) is nondecreasing; Le., p(t1) 5 p(t2) if tl 5 t 2 .  

4. p(.) is such that p( t )  > 0 for t > 0. 

t lo  

Any forcing function may be substituted in Algorithm 3. For example, another 
valid forcing function is 

for a,P > 0. The latter may offer some advantages because it is less restrictive on 
larger step sizes. 

23 



3.2.3 Assumptions on the objective function 

We need to make some standard assumptions regarding the objective function. The 
first two assumptions do not require any continuity; only the third assumption requires 
that the gradient be Lipschitz continuous. 

Assumption 3.4 The set F = { x E R I f(x) 5 f (xo)  } is bounded. 

Assumption 3.5 The function f is bounded below on R. 

Assumption 3.6 The gradient o f f  is Lipschitz continuous with constant 
M on F. 

As in [18] we combine Assumptions 3.4 and 3.6 to assert the existence of a constant 
y > 0 such that 

I I  V f ( 4  II 5 7,  (9) 

for all x E F. 

3.2.4 Assumptions on the asynchronicity 

In the synchronous case, we implicitly assume that the evaluation time for any single 
function evaluation is finite. However, in the asynchronous case, that assumption 
must be made explicit. 

Condition 3.7 If a trial point is submitted to the evaluation queue at 
iteration k ,  either its evaluation will have been completed or it will have been 
pruned from the evaluation queue by iteration k + 7. 
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3.3 Bounding a measure stationarity 

In this section, we prove global convergence for Algorithm 1 by showing (in Theo- 
rem 3.10) that x ( z k )  can be bounded in terms of the step size. 

Synchronous GSS algorithms obtain optimality information at unsuccessful itera- 
tions, when all points corresponding to the €-tangent cone have been evaluated and 
rejected. In this case, we can bound x(z)  in terms of the step size A, [MI. In asyn- 
chronous GSS, however, multiple unsuccessful iterations may pass before all points 
corresponding to generators of a specific €-tangent cone have been evaluated. Propo- 
sition 3.8 says when we may be certain that all relevant points with respect to a 
specific €-tangent cone have been evaluated and rejected. 

Proposition 3.8 Suppose Algorithm 1 is applied to the optimization problem (1). 
Furthermore, at iteration k suppose we have 

Let G be the set of generators for T ( z k ,  & ) .  Then  G 2)k and 

Proof. Let k* 5 k be the most recent successful iteration. Then xg = 51, for 
all t E { k * ,  . . . , k} .  Since A, 5 Amin, there exists k with k* 5 k 5 k such that 
6~^, = 8, in either Step 12 or Step 21 of Algorithm 1. Moreover, since A k  5 E,,, we 
have E L  = A k  as well. Recalling G is the set of generators for T ( x k ,  &) = ~ ( z k ,  E L ) ,  
we have then that G was appended to Dx^, (in either Step 14 or Step 23). Therefore, 
G C 2 ) k  because there has been no successful iteration in the interim. 

Now, every direction in G was appended with an initial step length greater than 
or equal to h k .  And all the current step lengths are strictly less that A,. Therefore, 
every point of the form 

X k + & d ,  d E G, 
has been evaluated. (Note that, by definition of T(z,, & ) ,  x k  + i i k d  E for all 
d E G. None of these points has produced a 
successful iteration, and every one has parent' z k ,  therefore, (10) follows directly from 

Hence i i k  = i i k  for all d E G.) 

Algorithm 3. 0 

Using the previous result, we can now show that the projection of the gradient 
onto a particular €-tangent cone is bounded as a function of the step length A,. 

Theorem 3.9 Consider the optimization problem (l), satisfying Assumption 3.6 
along with Conditions 3.2 and 3.3. If 
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then 

where the constant K~~~ is from Condition 3.2 and the constant M is from Assump- 
tion 3.6. 

Proof. Using Proposition 3.8, the proof is essentially the same as [18, Theorem 
6.31. Let G denote the set of generators for T ( x k , & ) .  By Condition 3.2 and (a), 
there exists a d E G such that 

b i n  1 1  [ - v f ( x k ) 1 ~ ( ~ ~ , & )  1 1  < - - v f ( x k ) T d .  (11) 

Proposition 3.8 ensures that 

f ( x k  f A k i )  - f ( x k )  >_ - P ( A k ) *  

By the mean value theorem, there exists Q E (0,l) such that 

f ( x k  + A k d )  - f ( x k )  A k v f ( x k  + Q A k d )  ^ T A  d. 

Thus. 

Subtracting v f ( x k ) T d  from both sides and rearranging yields 

P (  A k )  

A k  
- v f ( x k ) T d  5 ( v f ( x k  + Q A k i )  - v f ( x k ) ) T d ^  + - 

Lipschitz continuity from Assumption 3.6 then implies 

P( A k )  

A k  
-v f ( x k ) ' d  5 M A k  + -1 

Combining this with (11) yields the desired result. 0 

The previous result involves a specific €-tangent cone. The next result generalizes 
this to our desired use of the measure of stationarity X ( x k ) ,  which is also bounded in 
terms of the step length &. 

Theorem 3.10 Suppose Assumptions 3.4 and 3.6 hold for (1) and that Algorithm 1 
satisfies Conditions 3.2 and 3.3. Then if 

we have 
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Proof. This proof follows [18, Theorem 6.41. From Proposition 3.1 we have 

From Theorem 3.9, we have 

The result follows the observation that 

using the constant from (9) 

3.4 Globalization 

0 

Next, in Theorem 3.12, we show that the maximum step size can be made arbitrarily 
close to zero. This is the globalization of GSS methods [19]. The proof hinges upon 
the following two properties of Algorithm 1 when Condition 3.7 holds: 

1. The current smallest step length decreases by at most a factor of two at each 
unsuccessful iteration. 

2. The current largest step-size decrease by at least a factor of two after every q 
consecutive unsuccessful iterations. 

Before proving Theorem 3.12 we first prove the following proposition which says that, 
given any integer Ad, one can find a sequence of M or more consecutive unsuccessful 
iterations, Le., the number of consecutive unsuccessful iterations necessarily becomes 
arbitrarily large. 

Proposition 3.11 Suppose that Assumption 3.5 holds for problem (1) and that Al- 
gorithm l satisfies Condition 3.3 and Condition 3.7. Let S = ( k l ,  kz, . . . } denote the 
subsequence of successful iterations. If the number of successful iterations is infinite, 
then 

limsup (ki - ki-1) = 00. 
2-m 

Proof. Suppose not. Then there exists an integer J > 0 such that ki - ki-1 < J 
for all i. We know that, at each unsuccessful iteration, the smallest step size either 
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has no change or decreases by a factor of two. Furthermore, for k E S ,  we have 
A t )  2 Amin. Therefore, since a success must occur every J iterations, we have 

Note the previous bound holds for all iterations, successful and unsuccessful. 

Let 2? = {.!I, &, . . . }  denote an infinite subsequence of S with the additional 
property that its members are at least 7 apart, i.e., 

Since the parent of any point 21, can be at most 7 iterations old by Condition 3.7, 
this sequence has the property that 

f (zei- , )  2 PARENTFX(Q) for all i. 

Combining the above with the fact that p ( - )  is nondecreasing from Condition 3.3, 
we have 

contradicting Assumption 3.5. 0 

Theorem 3.12 Suppose that Assumption 3.5 holds for problem (1) and that Algo- 
rithm l satisfies Condition 3.3 and Condition 3.7. Then 

liminf max {A!)} = 0. 
k-’%XJ l < i < p k  

Proof. Condition 3.7 implies that the current largest step-size decreases by at 
least a factor of two after every 7 consecutive unsuccessful iterations. Proposition 3.11 
implies that number of consecutive unsuccessful iterations can be made arbitrarily 
large. Thus the maximum step size can be made arbitrarily small and the result 
follows. 0 

3.5 Global convergence 

Finally, we can combine Theorem 3.10 and Theorem 3.12 to immediately get our 
global convergence result. 
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Theorem 3.13 If problem (1) satisfies Assumptions 3.4, 3.5, and 3.6 and Algo- 
rithm 1 satisfies Conditions 3.2, 3.3, and 3.7, then 

liminf x ( z k )  = 0. 
k+cc  
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4 Implementation Details 

In this section we provide details of t,he implementation. 
integrate the strategies outlined in [l l ,  14, 221. 

For the most part we 

4.1 Scaling 

GSS methods are extremely sensitive to scaling, so it is important to use an appropri- 
ate scaling to get the best performance. As in [22], we construct a positive, diagonal 
scaling matrix S = diag(s) E Itnx" and a shift r E R" to define the transformed 
variables as 

1 i = S s - x - r ,  

Once we have computed an appropriate scaling matrix S and shift vector r ,  we 
transform (1)  to 

minimize m 
subject to t L  5 A I 2  5 i.u (13) 

h h 

AE2 = b, 

where 

Ideally, the simple bounds are transformed to the unit hypercube: 

{ 2  I O 5 2 : < e } .  

In the numerical experiments in $5, we used 

ti if ti > -oc 
0 otherwise. 

ui - ti if ui, ti are finite 
and ri = 

otherwise, 
si = 

From this point forward, we will still use the notation in (1) but assume that the 
problem is appropriately scaled, Le., as in (13). 
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4.2 Function value caching 

In the context of generating set search algorithms, we frequently re-encounter the 
same trial points. In order to avoid repeating expensive function evaluations, we 
cache the function value of every point that is evaluated. The cached points are 
stored in a splay tree for efficient look-up. Moreover, cached values can be used 
across multiple optimization runs. 

An important feature of our implementation is that we do not require t’hat points 
be exactly equal in order to use the cache. Instead, we say that two points, x and y, 
are J-equal if 

Iyi - xi1 5 J si, for i = 1 , 2 , .  . . ,n. 

Here 
of the ith variable. For further details, see [14]. 

is the cache comparison tolerance, which defaults to .5&, and si is the scaling 

4.3 Snapping to the boundary 

In Algorithm 2, we modify the step length so that we step exactly to the boundary 
whenever the full step would have produced an infeasible trial point. Conversely, it is 
sometimes useful to “snap” feasible trial points to the boundary when they are very 
close to it because, in real-world applications, it is not uncommon for the objective 
function to be highly sensitive to whether or not a constraint is active. For example, 
an “on/off’ switch may be activated in the underlying simulation only if a given xi 
lies on its bound. A further somewhat subtle point is that if a function value cache 
like that in 54.2 is used, it may become impossible to evaluate certain points on the 
boundary if they lie within the cache tolerance setting of a previously evaluated point 
that is not on the boundary. 

Suppose that x is a trial point produced by Algorithm 2. We further change the 
point x as follows. Let S denote the set of constraints within a distance csnap of x. 
Then consider, 

Here (c1) represents the appropriate lower or upper bound, whichever is active. We 
prune dependent rows from (14) so that the matrix has full row rank. LAPACK 
is then used to solve the generalized least squares problem 1 1  y - x 1 1 ,  subject to the 
constraint (14). If the solution x to the above least-squares problem is feasible for 
(l), then we reset x = x before sending the trial point to the evaluation queue. 

(A1)sx = (c1)s  (14) 

4.4 Generating conforming search directions 

In Steps 1, 13, and 22, we have to compute generators for the tangent cones corre- 
sponding to €-active constraints. In the unconstrained and bound-constrained cases, 

32 



the 2n coordinate directions always include an appropriate set of generators. For 
linear constraints, however, this is not the case; instead, the set of directions depends 
on AI and AE. We know that the total number of directions that will potentially be 
needed is finite (see [18]). Most problems (even degenerate ones) require a modest 
number of search directions; however, there are rare cases where the number of direc- 
tions needed to generate the appropriate cone is quite large. Our numerical results 
in 55 verify these claims; the only problematic case was the problem MAKELA that 
required more than 220 generators. In the nondegenerate case, the maximum number 
of generators needed at any single iteration is 2n; moreover, adding linear constraints 
can only reduce the number of search directions (see Corollary 4.2). 

Our method for generating appropriate conforming search directions follows [22]. 
Let Vp and VL be formed as in (5). If the directions defining the normal cone are not 
degenerate, then the following theorem may be used. 

Theorem 4.1 ([22]) Suppose N ( x ,  E)  is generated b y  the positive span of the columns 
of the matrix Vp and the linear span of the columns of the matrix VL : 

N ( x ,  E )  = { W  I w = VpX + V L ~ ,  X 2 0). 

Let Z be a matrix whose columns are a basis for the nullspace of VT, and N be a 
matrix  whose columns are a basis for the nullspace of VFZ. Finally, suppose a right 
inverse R exists for VFZ. Then  T ( x , E )  is the positive span of the columns of -ZR 
together with the linear span of the columns of Z N  ; 

T(x ,  E )  = {W I - ZRU + Z N &  u 2 0). 

Thus whenever a right inverse for VFZ exists, we use the linear algebra software 
package LAPACK [l] to compute generators for T ( x ,  E ) .  However, if VFZ fails to have 
a right inverse, signifying that the E-active constraints are degenerate, we need to use 
a different method. In the degenerate case we use the C-library cddlib develop by 
Komei Fukuda [8], which implements the double description method of Motzkin et 
al. [27]. The following corollary follows immediately from Theorem 4.1 and a simple 
dimensionality argument. 

Corollary 4.2 Suppose that generators G k  for the tangent cone T ( x ,  E )  are computed 
according to Theorem 4.1. Then  

IGkI 5 2% 

I n  particular, i f  only €-active inequality constraints are active then 

where r equals the number of E-active inequality Constraints. 
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Proof. We know that the magnitude of & is given by number of columns in R 
plus twice the number of columns in N .  Since R denotes the pseudoinverse of %TZ 
and N its nullspace basis matrix we must have that R is an n, x n, matrix and N 
an n, x (n, - r )  matrix where 

n, = dim(null(V:)) 
n, = dim(V,TZ). 

Thus the total number of generators is given by 

n, + 2(n, - n,) = 2n, - n,. 

The largest n, can be however is n and the proof follows. 0 

4.5 Direction caching 

Further efficiency can be achieved through the caching of tangent cone generators. 
Every time a new set of generators is computed, it can be cached according to the 
set of active constraints. Moreover, even when ~k changes, it is important to track 
whether or not the set of active constraints actually changes. Results on using cached 
directions are reported in $5.  In problem EXPFITC, the search directions are modified 
to incorporate new €-active constraints 98 times. However, because generators are 
cached, new directions are only computed 58 times, and the cache is used 40 times. 

Though the work required to compute generators is typically nominal compared 
to the costs of function evaluations, there are still occasions when the cost is non- 
trivial (possibly significantly so in the degenerate case). Moreover, cached directions 
can be reused across multiple optimizations when a sequence of objective functions 
are minimized for the same set of linear constraints. For example, the augmented 
Lagrangian approach in [20] requires such a sequence of solutions. 

4.6 Augmenting the search directions 

The purpose of forming generators for T(zk,  ~ k )  is to allow tangential movement along 
nearby constraints ensuring that the locally feasible region is sufficiently explored. 
This can, however, make it difficult to approach optimal points that lie directly on 
nearby constraints. In order to allow boundary points to be approached directly, 
additional search directions may be added; two possible candidates for extra search 
directions are shown in Figure 3. In our experiments the (projected) constraints 
normals were added to the corresponding set of conforming search directions. That 
is, we append the columns of the matrix (ZZ)'Vp, where 2 and Vp are defined in 
Theorem 4.1. 
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Figure 3. Two options for additional search directions are 
the coordinate directions (left) or the normals to the linear 
inequality constraints (right). 
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5 Numerical results 

Our goal is to numerically verify the effectiveness of the asynchronous GSS algorithm 
for linearly-constrained problems. Algorithm 1 is implemented in APPSPACK Ver- 
sion 5.0, including all the implementation enhancements outlined in 54. All problems 
were tested on Sandia’s Institutional Computing Cluster (ICC) with 3.06GHz Xeon 
processors and 2GB RAM per node. 

5.1 Test Problems 

We test our method on problems from the CUTEr (Constrained and Unconstrained 
Testing Environment, revisited) test set. We selected every problem with general 
linear constraints and 1000 or fewer variables, for a total of 119 problems. We divide 
these problems into three groups: 

0 Small (1-10 variables): 72 (6 have empty or single point feasible regions) 

0 Medium (11-100 variables): 24 

0 Large (101-1000 variables): 23 

The CUTEr test set is specifically designed to challenge even the most robust, 
derivative-based optimization codes. Consequently, we do not expect to be able to 
solve all of the test problems. Instead, our goal is to demonstrate that we can solve 
a majority of the problems, including problems with degeneracies. To the best of our 
knowledge, this is the largest set of test problems ever attempted with a derivative-free 
method for linearly-constrained optimization. 

5.2 Choosing a starting point 

In general, we used the initial points provided by CUTEr. If the provided point 
was infeasible, however, we instead found a starting point by solving the following 
program using MATLAB’s linprog function: 

minimize 0 

If the computed solution to the first problem was still infeasible, we applied MAT- 
LAB’S quadprog function to 

minimize I1 x - xo 11; 
C L  L AIX 5 cu 

A E x  = b. subject to 
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Here, xo is the (infeasible) initial point provided by CUTEr. Using this approach, we 
were able to find feasible starting points for every problem save ACG, HIMMELBJ, 
and NASH. 

5.3 Parameter Choices 

The following parameters were used to initialize Algorithm 1: (a) Atol = 1.0 x 
(b) Amin = 2.0 x lop5, (c) h0 = 1, (d) E,,, = 2.0 x (e) qmax = number of 
processors, and (f)  a = 0.01. Additionally, for the snap procedure outlined in 54.3, 
we used E,,,~ = 0.5 x and we limited the number of function evaluations to 
lo6. For extra search directions, as described in 54.6, we added the outward pointing 
constraint normals. 

5.4 Numerical results 

Numerical results on all the test problems are presented in Tables 1-4. Detailed 
descriptions of what each column indicates are shown in Figure 4. Note that the sum 
of F-Evals and F-Cached yields the total number of function evaluations; likewise, the 
sum of D-LAPACK, D-CDDLIB, and D-Cached is the number of times that directions 
needed to be computed because the set of €-active constraints changed. 

Because each run of an asynchronous algorithm can be different, we ran each 
problem a total of ten times and present averaged results. The exception in the 
objective value f(x*), for which we present the best solution. Problems which had 
multiple local minima (i.e., whose relative difference between best and worst objective 
value is greater than are denoted in the tables by an asterisk and Table 5 
explicitly gives the differences for those cases. 

5.4.1 Group 1: 1-10 Variables 

Consider first Tables l a  and lb,  which show results for 72 linearly-constrained CUTEr 
problems with up to 10 variables. Note that some of the problems had as many as 2000 
inequality constraints. Six of the problems had non-existent or trivial feasible regions 
and so are excluded from our analysis. Of the 66 remaining problems, APPSPACK 
was able to solve 63 (95%). 

Considering the solution accuracy, the final objective function obtained by APPSPACK 
was as good or better as that obtained by SNOPT, a derivative-based code. We com- 
pare against SNOPT only to illustrate that it is possible to obtain the same objective 
values. In general, if derivatives are readily available, using a derivative-based code 
such as SNOPT is preferred. We do note, however, that APPSPACK converged to 
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Table la. 
tested on 20 processors. 

CUTEr problems with 10 or fewer variables, 





0 Problem: Name of the CUTEr test problem. 
0 n/mb/mi/m, : Number of variables, bound constraints, inequality constraints, and 
equality constraints, respectively. 
0 f(x*) : Final solution 
0 Soln. Acc.: Relative accuracy of solution as compared to  SNOPT [9]: 

where a is the final APPSPACK objective value and ,f3 is the final SNOPT objective value. A 
positive value indicates that the APPSPACK solution is better than SNOPT’s. 
0 F-Evals: Number of actual function evaluations, i.e., not counting cached function values 
0 F-Cached: Number of times that cached function values were used. 
0 Time (sec): Total parallel run-time. 

D-LAPACK/D-CDDLIB: Number of times that LAPACK or CDDLIB was called, 
respectively, to  compute the search directions. 
0 D-Cached: Number of times that a cached set of search directions was used. 

D-MaxSize: Maximum number of search directions ever used for a single iteration. 
0 D-Appends: Number of times that additional search directions had to be appended in 
Step 23. 

Figure 4. Column descriptions for numerical results. 

different solutions on different runs on four problems (denoted by asterisks). This is 
possibly due to the problems having multiple local minima. Otherwise, APPSPACK 
did at least as well as SNOPT on all 63 problems, comparing six digits of relative 
accuracy. In fact, the difference between objective values was greater than on 
only one problem, HS54. In this case APPSPACK converged to a value of -. 19 while 
SNOPT converged to 0. Again, we attribute such differences to these problems having 
multiple local minima. 

In a few cases, the number of function evaluations (F-Evals) is exceedingly high 
(e.g., L I N  or ODFITS). This is partly due to the tight stopping tolerance (A,, = 
In practice, we typically recommend a stop tolerance of A,, = GSS methods 
share similar traits with steepest descent methods; consequently, they quickly find 
the neighborhood of the solution but are slow to converge to the exact minimum. An 
example of this behavior is provided, for example, in [22]. 

In general, the sets of search directions changed many times over the course of 
the iterations. The sum of D-LAPACK and D-CDDLIB is the total number of times 
an entirely new set of €-active constraints was encountered. The value of D-Cached 
is the number of time that a previously encountered set of €-active constraints is 
encountered again. In general, a new set of €-active constraints will yield a different 
set of search directions. In a few cases, only one set of search directions was needed 
of the entire course of the iterations (cf., HS24/28/35, etc.), which can be due to 
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having a small number of constraints or only equality constraints. In other cases, a 
large number of different sets of search direction was needed (cf., SIPOWI/lM/2/2M). 
It is important to have the capability to handle degenerate vertices; 13 (20%) of the 
problems that were solved required CDDLIB to generate search directions. 

The total number of search directions required at any single iteration (D-MaxSize) 
was 2n or less in 56 (85%) of the cases. The number of search directions can be larger 
than 2n if constraint degeneracy is encountered and/or additional search direct ions 
are appended in Step 23. Problems OET3 and SIPOW3 required 104 and 459 search 
directions, respectively, at a single iteration. The need to append search directions 
(D-Appends), which is unique to the asynchronous method, occurred in 16 (24%) 
cases. 

5.4.2 Group 2: 11-100 Variables 

Of the 24 problems in this category, we were unable to identify feasible starting points 
in 2 cases, so we ignore these for our analyses. We were able to solve 16 (73%) of 
the remaining 22 problems. The problem of encountering an empty tangent cone, 
which happened in 4 cases, is like the situation shown in Figure l(d).  It can happen 
as a function of poor scaling of the variables when E,,, is too large. The MAKELA is 
famously degenerate and requires 2" + 1 generators [22]. 

In two of the 16 problems, APPSPACK converged to different solutions across 
different runs. And on one of those two problems (KSIP), the solution was not as 
good as that obtained by SNOPT. Otherwise, all the solutions were comparable to 
that obtained by SNOPT. 

Five problems (31%) require more than 50,000 function evaluations. We can 
only hope that such behavior does not typify real-world problems with expensive 
evaluations. As noted previously, the number of evaluations will be greatly reduced 
if Atol is increased. 

The number of search directions exceeded 2n for four problems. The problem 
KSIP required 4126 search directions at one iteration. The problem DUAL1 required 
249 appends to the search directions, indicating that it was near the solution for some 
time before it finally converged. 

In Table 3, we compare synchronous and asynchronous runs of GSS; Correspond- 
ing bar graphs of the time and function evaluation comparisons are given in Figure 5. 
For these runs, artificial time delays have been added to simulate more expensive 
function evaluations. The time delay was selected randomly per evaluation to be be- 
tween 5 and 15 seconds. We ran each problem on 5, 10, and 20 processors. Two things 
are worth noting here. One is that, in many cases, the asynchronous approach used 
a greater number of function evaluations. Second, despite evaluating more function 
values, the asynchronous approach took less time to solve the problem in every case 
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AVION2 
DEGENLPA 

49/ 98/ 15/ 0 
201 401 151 0 

DUAL1 
DUAL2 

85/17O/ 1/ 0 
9611921 11 0 

3.5e-02 
3.4e-02 

-2e-07 474829/2992 268.8 138/1/688 301 249 
-6e-08 1763961 999 123.7 149111 22 191 0 

0.0ef00 
1.7ef03 

OefOO 13876/1339 6.0 2/0/ 0 102 0 
-8e-10 12027312478 77.5 93/01 7 200 0 

HS118 
HS119 

15/ 30/ O/  29 
161 321 81 0 

6.6e+02 
2.4e+02 

-2e-16 634/ 64 2.7 24/0/ 0 36 0 
-3e-11 4721 37 2.6 16/01 0 16 0 

2.6e-02 
2.6e-02 

-le-10 945/ 67 2.7 7/0/ 1 22 0 
4e-09 984/ 70 3.6 8/0/ 1 22 0 

Failed - evaluations exhausted 
Failed - empty tanqent cone encountered 

DEGENLPBI 20/ 40/ 15/ 0 Failed - empty tangent cone encountered 

DUAL4 I 75/150/ 1/ 0 7.5e-01 I -3e-08 I 56328/3584 I 32.3 I 91/ 1/ 15 I 283 I 1 
l.le+Oll-9e-lll 4469/ 3521 3.11 7/2/ 31 231 0 

HIMMELBJ I 45/ O /  14/ 0 Failed - could not find initial feasible point 

KSIP* I 20/ o/  0/1001 l.Oe+OOI-3e-011 31611 1241142.01 2/41 0141261 0 
4.5e-011 4e-091 53777/31891 11.21 13/01 01 401 0 

2.4e+031-1e-11] 306/ 281 2.61 6/0/ 01 101 0 
Failed - too many generators 

NASH I 721 O /  241 0 Tailed - could not find initial .feasible point 

3.0e-02 le-09 879/ 85 2.7 6/0/ 1 22 0 
3.3e-02 4e-10 9841 66 2.7 10/0/ 1 22 0 

PORTFL4 I 12/ 24/ 1/ 0 

Failed - empty tangent cone encountered 
Tailed - empty tangent cone encountered 

Table 2. CUTEr problems with 11-100 variables, tested on 
40 processors. 
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Problem 
FCCU 

HS118 

HS119 

LOTSCHI 

PORTFLl 

PORTFL2 

PORTFL3 

PORTFL4 

PORTFLG 

121 241 1/ 0 

121 241 11 0 

121 241 11 0 

121 241 11 0 

Table 3. CUTEr problems with an artificial time delay, 
testing synchronus and asynchronous implementations on 5, 
10, and 20 processors. 
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save two (PORTFL4 on 5 processors and LOTSCHD on 20 processors). Thus the 
asynchronous approach was not only gaining more information in less time, but solv- 
ing each problem in less time. This suggest that comparisons between asynchronous 
met hods and synchronous methods based merely upon function evaluations may be 
almost irrelevant. Note that for the sake of time, to demonstrate this feature, we 
have used relatively low time delays, 5-15 seconds. In real life problems these time 
delays can be measured in minutes, hours, and even days. 

DUAL3 
GMNCASEl 
GMNCASE2 
GMNCASE3* 
GMNCASE4 
HYDROELM 

5.4.3 Group 3: 101-1000 Variables 

111/ 222/ 1/ 0 1.4e-01 -8e-08 245923/ 1148 203.4 198/1/ 82 262 18 
175/ O /  O/ 300 2.7e-01 4e-07 469060/ 1725 1398.9 282/0/106 538 49 
175/ O /  0/1050 -9.9e-01 -le-09 245306/ 522 2513.4 176/0/ 3 350 0 
175/ O/  0/1050 1.5e+00 -3e-09 374004/14820 12462.6 109/1/ 0 350 0 
175/ O/  O /  350 Failed - empty tangent cone encountered 
505/1010/ 011008 -3.6eC06 I-3e-071 553731 3512 I 4273.5 12871 11 2 11422 I 2 

AGG 11631 01 361 452 I Failed - could not jind initial feasible point 

HYDROELS 
PRIMAL1 
PRIMAL2 
PRIMAL3 

169/ 338/ O /  336 -3.6ef06 3e-12 99221 645 53.0 96/0/ 0 334 0 
325/ 1/ O /  85 -3.5e-02 -8e-10 402563/10355 5108.1 82/0/592 1031 301 
649/ 1/ O/  96 Failed - scaling: iterates became infeasible 
7451 11 01 111 Failed - scaling: iterates became in.feasible 

PRIMALCl 
PRIMALC2 
PRIMALC5 
PRIMALC8 

230/ 215/ 0/ 9 -1.leC00 -le-00 73774/ 2550 292.1 4/0/ 10 460 0 
231/ 229/ O /  7 -2.3et03 -3e-01 637764/ 1049 1417.4 3/0/ 0 462 0 
287/ 278/ O/  8 -1.3e+00 -le-00 16955/ 925 206.9 2/0/ 0 574 0 
5201 5031 01 8 Failed - max wall-time hit 

QPCBOEIl I384/ 540/ 9/ 431 I Failed - scaling: iterates became infeasible 
QPCBOEI2 
QPCSTAIR 

143/ 197/ 4/ 181 Failed - scaling: iterates became infeasible 
4671 54912091 147 Failed - scalinq: iterates became infeasible 

QPNBOEIl I384/ 540/ 9/ 431 I Failed - scaling: iterates became infeasible 
QPNBOEI2 
QPNSTAIR 

143/ 197/ 4/ 181 Failed - scaling: iterates became infeasible 
4671 54912091 147 Failed - scaling: iterates became in-feasible 

SSEBLIN* 11941 3641 481 24 I 7.9e-kO7 I-8e-OlI851858/47582 I 1824.9 I157/0/ 7 I 3071 0 
STATIC3 I434/ 144/ 96/ 0 I Failed - scaling: iterates became infeasible 

Table 4. 
tested on 60 processors. 

CUTEr problems with 100 or more variables, 
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I Problem ( n  I 10) I Rel. Diff. 1 

HS44 
HS44NEW 

I EXPFITC I 3e-4 I 
.13 
.13 

HIMMELBI 
KSIP 

I SIPOW3 I .43 I 

2e-5 
.29 

I Problem (10 < n 5 100) I Rel. Diff. I 

I Problem (n  > 100) I Rel. Diff. I 
I GMNCASES I .54 I 
I SSEBLIN I .038 

Table 5 .  Problems whose best and worst objective value, 
obtained from 10 separate asynchronous runs, had a relative 
difference greater than 

Though the primary focus of our numerical section is on the subset CUTEr test 
problem with 100 variables or less, we did explore the possibility of solving even 
larger problems. In this case, we were able to solve 11 (48%) of the 23 problems. 
However, four of those 11 did not have solutions that were as good as SNOPT was 
able to obtain. Of the remaining 7 problems, the largest had 505 variables and 1008 
inequality constraints. 

For the problems we could not solve, we supspect the issue depend largely on the 
effects of inadequate scaling ~ i.e., the different parameters are based on entirely 
different scales and cannot be directly compared. As a result, our check for feasibility 
of the trial points fails because we are unable to appropriately perform this check. 
In general, we obtain scalings from the bound constraints. However, in the cases 
where we do not have complete scaling information (which was the case in all four 
failed problems), we must instead rely on problem-specific information, which would 
typically be provided for real-world applications, but is not available here. 

In nearly all cases, the number of function evaluations was exceedingly large due 
to the curse of dimensionality. However, we were able to solve problem HYDROELS, 
with 169 parameters, using only 9,922 function evaluations. 
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6 Conclusions 

We have presented an asynchronous generating set search algorithm for linearly con- 
strained optimization that is provably convergent to firsborder optimal points; fur- 
thermore, we have demonstrated its effectiveness on a wide range of CUTEr test 
problems. This paper serves to bridge the gap between existing synchronous GSS 
methods that support linear constraints [19, 22, 231 and asynchronous GSS methods 
that support bound constraints [ll, 171. Synchronous methods work with a single 
step size at each iteration and so need only consider one tangent cone at a time 
(though that tangent cone may change from iteration to iteration). Asynchronous 
methods for bound-constrained problems rely on the fact that, even though multiple 
step sizes are in play, a single fixed set of generators is sufficient in all situations 
(namely, the coordinate search directions). In this paper, we have bridged the gaps 
between these two approaches. We developed a strategy to handle multiple tangent 
cones simultaneously by appending additional search directions when needed. 

In addition to theoretical results, we have also provided practical implementation 
details that can have a huge impact on overall efficiency and performance, includ- 
ing scaling, function caching, snapping to the boundary, augmenting search direc- 
tions, and direction caching. All of the enhancements have been implemented in 
APPSPACK. Beyond linear constraints, we expect that these features will also prove 
useful in solving the subproblems that typically arise in methods that support non- 
linear constraints such as [20]. 

We have also provided an extensive numerical study of the ability of GSS meth- 
ods to handle linear constraints, extending results in [22, 161. To the best of our 
knowledge, this is the most extensive study of direct search methods for linearly- 
constrained optimization problems. The results demonstrate the ability to reliably 
obtain (as theory predicts) optimal objective values. Furthermore, we have once 
again [15, 171 shown the benefits of the asynchronous approach, which nearly always 
reduces the overall execution time, in many cases by 25% or more. 
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